Perfect Matchings and Perfect Squares

نویسنده

  • William Jockusch
چکیده

In 1961, P.W. Kasteleyn enumerated the domino tilings of a 2n × 2n chessboard. His answer was always a square or double a square (we call such a number "squarish"), but he did not provide a combinatorial explanation for this. In the present thesis, we prove by mostly combinatorial arguments that the number of matchings of a large class of graphs with 4-fold rotational symmetry is squarish; our result includes the squarishness of Kasteleyn's domino tilings as a special ease and provides a combinatorial interpretation for the square root. We then extend our result to graphs with other rotational symmetries.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Perfect Matchings in Edge-Transitive Graphs

We find recursive formulae for the number of perfect matchings in a graph G by splitting G into subgraphs H and Q. We use these formulas to count perfect matching of P hypercube Qn. We also apply our formulas to prove that the number of perfect matching in an edge-transitive graph is , where denotes the number of perfect matchings in G, is the graph constructed from by deleting edges with an en...

متن کامل

Complete forcing numbers of polyphenyl systems

The idea of “forcing” has long been used in many research fields, such as colorings, orientations, geodetics and dominating sets in graph theory, as well as Latin squares, block designs and Steiner systems in combinatorics (see [1] and the references therein). Recently, the forcing on perfect matchings has been attracting more researchers attention. A forcing set of M is a subset of M contained...

متن کامل

Perfect Matchings of Cellular Graphs

We introduce a family of graphs, called cellular, and consider the problem of enumerating their perfect matchings. We prove that the number of perfect matchings of a cellular graph equals a power of 2 tiroes the number of perfect matchings of a certain subgraph, called the core of the graph. This yields, as a special case, a new proof of the fact that the Aztec diamond graph of order n introduc...

متن کامل

Almost all Steiner triple systems have perfect matchings

We show that for any n divisible by 3, almost all order-n Steiner triple systems have a perfect matching (also known as a parallel class or resolution class). In fact, we prove a general upper bound on the number of perfect matchings in a Steiner triple system and show that almost all Steiner triple systems essentially attain this maximum. We accomplish this via a general theorem comparing a un...

متن کامل

Matchings and Entropies of Cylinders

The enumeration of perfect matchings of graphs is equivalent to the dimer problem which has applications in statistical physics. A graph G is said to be n-rotation symmetric if the cyclic group of order n is a subgroup of the automorphism group of G. Jockusch (Perfect matchings and perfect squares, J. Combin. Theory Ser. A, 67(1994), 100-115) and Kuperberg (An exploration of the permanent-deter...

متن کامل

Estimating the permanent

We refer the reader to Jerrum's book [1] for the analysis of a Markov chain for generating a random matching of an arbitrary graph. Here we'll look at how to extend the argument to sample perfect matchings in dense graphs and arbitrary bipartite graphs. Both of these results are due to Jerrum and Sinclair [2]. Dense graphs We'll need some definitions and notations first: Definition 7.1 A graph ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comb. Theory, Ser. A

دوره 67  شماره 

صفحات  -

تاریخ انتشار 1994